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Instability of an elliptic jet 
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The dispersion equation for waves on an infinite uniform jet column of elliptic 
cross-section is derived, and approximated for large eccentricity with the aid 
of new asymptotics for the modified Mathieu functions. It is shown that the 
effect of appreciable eccentricity on lateral disturbances is greatly to reduce 
their growth rates below those for a circular jet, regardless of whether the 
disturbance grows spatially or temporally. For ‘vertical ’ disturbances it is shown 
that the behaviour of waves of general length is qualitatively similar to that of 
long waves on a two-dimensional jet. Thus the mode symmetric about the major 
axis has small growth rate whether the mode grows temporally or spatially, 
while the mode antisymmetric about the major axis has small growth rate if 
temporally growing, but large growth rate if spatially growing. Comments are 
made as to the relevance of these results to the mode of action of jet silencers which 
squash a round jet into a flat ‘fish-tail’ shape. 

1. Introduction 
The belief that high Reynolds number jet turbulence has a large-scale organized 

structure has recently been given impressively detailed and convincing support 
from the experimental work of Crow & Champagne (1971) and Lau, Fuchs & 
Fisher (1970). Equally convincing is Michalke’s (1971) demonstration that an 
analytical model giving excellent agreement with experiment is obtained by 
regarding the large-scale structure as a set of spatially growing instabilities on the 
mean jet profile (notwithstanding assurances in Crow & Champagne (1971) that 
spatial instability is incapable of explaining the observed results). Accepting this 
evidence, and accepting further the (plausible, though as yet unproven) idea 
that jet noise and the large-scale structure are intimately related, it follows that 
a good case can be made for the relevance of stability calculations to the jet 
noise problem. Much work has, of course, already been done on those lines, 
particularly in the Soviet Union; see, for examl;le, the collection of papers edited 
by Rimsky-Korsakov (1967) and the book by Sedel’nikov (1971), in which dis- 
persion equations are derived for disturbances to a variety of jet configurations, 
including multi-layered jets, systems of jets and ejector systems. 

This note gives a corresponding treatment of the jet of elliptic cross-section, 
motivated by the belief that it might lead to some understanding of the mode 
of action of jet noise supressors which squash a round jet into a flat fish-tail shape 
(see Voce & Simson 1972). Notches or slots may be cut into the nozzle to achieve 
this effect, or large plates may be used to perform the squashing, as is essentially 
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the case in the Concorde airliner. It seems to have been generally thought that the 
squashed jet was quieter (in the ‘flat ’ plane as it were, at any rate) because it had 
suffered better mixing, with areducedlength of potential core. If that were the case 
one might suppose that there would be Some noise suppression in the other plane, 
and that the suppression would improve continuously with further squashing of 
the jet. Neither of these effects is, in fact, found. The suppression is negligible in 
the ‘vertical’ plane (containing the minor axes of the cross-sections of the jet), 
while even in the flat plane, the suppression increases steadily with increases in 
the aspect ratio of sections of the jet only up to a certain value, beyond which 
no further suppression results -despite the fact that the jet continues t o  spread 
ever more rapidly. It appeared that a more likely explanation of the quietness 
of the squashed jet in the flat plane might come from a study of the instability 
characteristics of the jet, and that is the objective here. Expediency requires that 
the simplest model of the squashed jet be adopted, in which the flow is taken to 
be uniform and incompressible within a cylindrical vortex sheet whose cross- 
section is an ellipse. Real velocity profiles do not, of course, have this ‘top-hat’ 
form, except perhaps very close to the nozzle (where we could not, in any case, 
ignore the presence of the nozzle), and Michalke (1971) has shown that it is 
important to take a fairly realistic profile if good quantitative agreement with 
experiment is to be obtained. Such agreement is not the aim here, however, and 
it is unlikely that the ‘top-hat’ profile is so unrealistic as to  disguise essential 
features. A more serious error here probably lies in the adoption of a profile which 
is unchanging with axial distance, especially as the squashed jet does spread 
more rapidly than the round jet. But in any case, a satisfactory way of in- 
corporating appreciable spreading even into stability theory for a plane shear 
layer is not yet in sight, so that we do not consider that aspect further. 

2. The eigenvalue equation 

x2 y2 
vortex sheet 

We consider uniform incompressible flow at speed U within the elliptical 

-+- = 1 (-a < 2 < +a). 
a2 b2 

Outside the vortex sheet the fluid is stagnant. We impose (irrotational) dis- 
turbances on the flow, with an implied axial and time dependence exp [iax - iwt] 
throughout. For the moment we restrict ourselves to temporal instability, so that 
the complex frequency w is to be found in terms of the real positive wavenumber a. 

Denoting the perturbation potentials outside and inside the jet  by $(x, y) and 
$(x, y) respectively, we have to satisfy the Helmholtz equations 

with the usual kinematic and dynamic conditions 
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on the ellipse, a/& denoting differentiation along the normal. In  addition, 4 
must vanish at  infinity, while $ and V$ must be finite and continuous everywhere 
within the ellipse. 

Introduce elliptic cylinder co-ordinates according to 

x + i y  = mcosh(p+iB), 

where c is the eccentricity, p 2 0 and 0 < 8 < 27r. Then prablem (2.1)-(2.2) 
becomes 

p = pa defining the ellipse. A separable solution of (2.3) exists in the form 

provided @"+(h+2qcos28)@ = 0, ( 2 . 5 )  

9" - ( A  + 2q cash 2 p ) P  = 0 ,  (2.6) 

with q = these being, respectively, the Mathieu equation and modified 
Mathieu equation, with parameter - q. 

Solutions periodic in 6' with period 7r or 2n, such that t,h and Vt,h are continuous 
for p < pa (in particular, across the interfocal line) and such that q5 -+ 0 as p -+ 00, 

are (see for example, McLachlan 1947, p. 294 et sep.) 

in which h must have a characteristic value generally denoted by a2,(q) when 
m = 2%) while h = b2n+l(q) when m = 2 n f  1. These solutions are even about the 
major axis, and are even or odd about the minor axis according as m = 2 n  or 
m = 2n+ 1. Solutions odd about the major axis, and even or odd about the 
minor axis according as m = 2n + 1 or rn = 2n + 2, are 

where h = a2n+l(q) for m = 2n + 1 and h = b2n+2(q) for m = 2n + 2. In all these 
relations, n = 0,1 ,2 ,  . . ., and n signifies the number of zeros of the angular 
functions between 0 and gn-. The functions cem 8 and se,, 0 are analogous to cos me 
and sinm8, while Ce,p and Semp are analogoustoIwb(ar) and Fek,p and Gek,p 
to K,(ar) in the case of the round jet. 

Eigenvalue equations then follow directly from (2.4) as 
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(2.10) 

in which we shall abbreviate the right sides in an obvious way as Wm(C,F) or 
Fn(S, G). These expressions are the direct analogues of the equation 

(;-1) ua = I&a)K,(aa) 
Im(aa) KA(aa) 

given by Batchelor & Gill (1962) for mth-order azimuthal disturbances to a 
circular jet of radius a. For that problem it is easy to show that Wm(I, K )  is real 
and negative for all m and all cxa, so that all disturbances are unstable. In the 
present problem we have found no such general result, though neither have we 
found any case of purely neutral stability, so that it seems unlikely that the 
ellipticity alone can completely stabilize the flow to any class of disturbances. 
None the less, some interesting results are found when the eccentricity is large, 
and suitable approximations for that case are found in the next section. 

3. Approximations for large eccentricity 

limit e -+ 1 - with aR = O(1). Then 
Let R = (ab)B be the radius of the equivalent-area circle, and consider the 

Po N [2( 1 -€)I+, q N (&.R)2 [2( 1 - 41-4 (3.1) 

and we therefore need asymptotics for the modified Mathieu functions, as 
q -+ 5 co, holding uniformly in p down to values as small as q-l. 

Consider for definiteness the case h = a,&), for which (2.6) has solutions 
Ce,, (p, - q)  and Fek,, (p, -a) .  As q -+ + co we have (McLachlan 1947, p. 239) 

a,,(q) = - 2~ + (8n + 2) qg + O( I),  (3.2) 

8”-{4qsinh2p+(8n+2)q*+0(1))B = 0, (3.3) 

where the 0(1)  and smaller terms are known, but not needed here. The equation 
for P(p)  is then 

and a straightforward WKB expansion 

gives f(p) = k zcoshp, 
g o @ )  = (cosechp)t (tanh &p)f@,+B), (3.4) 

with the same choice of . These approximations are proportional to Ce,, (p, - q)  
(plus sign) and to Fek,, (p, - q )  (minus sign). A plausible way of seeing this is 
to let p -+ + co, in which case the 9k.p) behave like 

r d  exp [ ar] (r = (x2 + y2)S), 

which are proportional to  the asymptotic forms of Ce,, and Fek,, respectively 
(McLachlan 1947, p. 369). A rigorous procedure involves using the WKB series 
to get approximations to the ordinary periodic Mathieu functions, identifying 
them by parity and periodicity considerations, and then using various trans- 
formations to get to the above results for the modified Mathieu functions. 



Instability of an  elliptic jet 

If further terms in the WKB expression are now pursued we h d  
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g,/g,  = O(coshp/q* sinh2p). 

In  particular, for p as small as 4-1 successive terms increase by O(q8) and the 
series is not uniformly valid in p. Here we get round the difficulty by finding 
a complementary expansion for small values of p and matching it to the solution 
(3.4). Since the region of non-uniformity is essentially p = 0 to 4-s we write 
7 = 2p$ and look for an asymptotic solution of (3.3) as q -+ + co with 7 = O(1). 

To leading order we then have 

( d V / d + )  - ($72 + 2n + &) B = 0, (3.5) 

whose solutions are parabolic cylinder functions. These functions have been used 
to approximate Mathieu functions before (McLachlan 1947, p. 369; Abramowitz & 
Stegun 1964, p. 742), but all those approximations relate solely to ordinary 
Mathieu functions and cannot be used to find the values of the modijed functions 
near p = 0. Consider first the solution corresponding to Ce,,. We need a solution 
capable of matching the function B+(p) of (3.4), and it is easily seen that this 
requires the corresponding solution of (3.5) to behave like T2nexp (&-,) as7-++m. 
Further, the solution must be even in 7, since Ce,,p is even in p. These conditions 
determine the solution uniquely up to a multiplicative constant (depending 

For the solution of (3.5) representing Fek,,p we have no parity requirement. 
This time the condition that the solution match the BJp) of (3.4) requires 
a behaviour .-(2,+1)exp [ - and is sufficient to determine the solution uniquely, 
up t n  a multiplicative constant, as 

The notation here is standard for solutions of (3.5). Note that, if attention were 
paid to the functions of q involved in the matching and in the precise identifica- 
tion of (3.4) with standard definitions of Ce and Fek, it would be possible to use 
(3.6) and (3.7) to describe in detail the behaviour of the modified Mathieu func- 
tions for large q and all small p, a description which appears not to have been 
given previously. 

Turning now to other cases, the expansion (3.2) holds also for t~,,+~(q), and the 
matching and parity requirements are also the same as in the above case. Thus, 
to the order considered here, Ce,,,, (p, - q )  = Ce,, (p, - q)  and is given by (3.6), 
while Fek,,,, (p, - q)  = Fek,, (p, - q)  and is given by (3.7). The other possibilities, 
h = a2,+,(q) and h = b,,+,(q), are both covered by (3.2) provided that 8n+ 2 is 
replaced on the right by 8n + 6. Apart from that, and the fact that we now need 
an odd solution of (3.5) to represent Se,(p, - q) ,  the work is unchanged, and we 
find 
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Of these results, those for Ce,, and SeZn+, can be found from transformation 
of well-known results (McLachlan 1947, p. 370); the remainder do not seem to 
have been recorded before. The relations (3.6)-(3.9) can now be used in (2.9)- 
(2.10)) and can be further approximated, since, according to (3.1)) T, = 2p,@ 
is in fact o( I) as q -+ a. We then find 

(3.10) 

(3.11) 

To help visualize the kind of motion described by these equations one can 
regard the W,,(C, P) modes as analogous to the axisymmetric mode of a circular 
jet in that they are symmetric about both axes, while the W,,+,(C, P) modes are 
even about the major axis, odd about the minor, and so represent sideways 
oscillations in the plane of the major axes. The W,,+,(S, G) modes, on the other 
hand, are even about the minor axis, odd about the major, and thus represent 
a flapping of the jet column in the plane of the minor axes, while the W,,,,(S, G) 
modes are odd about both axes and describe a kind of torsional oscillation of the 
column. 

Only low values of n are relevant in practice (and in any case the approxima- 
tions leading to (3.10)-(3.11) are invalid when n 3 1). We see then that the phase 
speeds of the (C, 3') modes are equal to U ,  while the temporal amplification rates 
are small, of order T$, whether m = 2n or 2n + 1 ; and that the amplification rates 
of the (8, G) modes are also small and O(&, but that the (S, G) modes have small 
phase speeds o(7, U) .  Note here that the wavelength-to-radius parameter aR 
has been held at  a general value O( 1) .  Thus in all cases, and for a general aR = O( l), 
the jet of large eccentricity is virtually stable to temporally growing modes, and 
additionally can only support (8, G) modes of very low phase speed. 

These are also the qualitative features of the two-dimensional jet in the long 
wavelength limit. There, if the jet width is 2B, we have 

[( Ua/w) - 13, = - tanh aB N - aB (3.12) 

for the symmetric mode (analogous to the Ce,, Fek, mode), while 

[( Ua/w) - 11' = - Goth aB N - (aB)-' (3.13) 

for the antisymmetric flapping mode (analogous to the Se,, Gek, mode of the 
elliptic jet). Writing T, = aB, the long wave properties of the two-dimensional 
jet are essentially those of the elliptic jet of large eccentricity with a general aR, 
T~ corresponding to 7,. 

Although the behaviour of the (C, B)  modes seem reasonable enough, that of 
the (S, 6) modes-in particular, their small growth rate-seems at  variance with 
intuition. Rather than a small growth rate, one would expect the flapping kinds 
of mode of an elliptic jet to have large growth rates. The difference arises because 
the above results relate to temporal instability, while intuition is more naturally 
based on ideas of spatial growth, at  any rate for jet flows. Assume that the results 
for the elliptic jet hold generally for complex a and w (a proof would require the 
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justification of a number of steps in the foregoing, in particular that (3.2) con- 
tinues to hold for complex 4). Then we can find the spatial instability charac- 
teristics (w real, E complex) for 8 close to unity and for an arbitrary but O(1) 
Strouhal number 8 = wR/U.  For the (G, P) modes we find 

( U C ~ / O )  - 1 - iXt(1- Eli%, 

while for the (X, a) modes 

(3.14) 

(Ua/o)  - 1 - exp ( +ri) X-+( 1 - e)-i%, (3.15) 

showing, as anticipated, that the (C, F )  modes have small growth rates, while 
the (8, G) modes have large growth rates, these trends being accentuated if X < 1. 
Again, these features are qualitatively the same as those of the two-dimensional 
jet at  low values of X, as can be seen by inverting (3.12) and (3.13) to give 

(Ua/w)  - 1 - f iX'i (symmetric mode), (3.16) 

(3.17) ( Ua/w) - 1 N exp ( & &ri) 8-5 (antisymmetric mode), 

with X = oB/U < 1. 

4. Conclusions 
It has been shown that an elliptic-section jet of large eccentricity is virtually 

stable to all temporally growing disturbances, and that, in the case of spatially 
growing disturbances, modes representing sideways oscillation parallel to the 
major axis have small growth rate, while those representing a flapping motion 
parallel to the minor axis have large growth rate. These features go some way 
towards supporting the idea that certain kinds of jet nozzle achieve noise sup- 
pression in particular planes by modifying the mean flow stability characteristics 
with respect to disturbances in those planes. Correspondingly, one is encouraged 
to look for trends of a similar kind emerging from other stability calculations, 
in the hope of finding other potential means for noise suppression. In  this light 
it is perhaps interesting to remark that the noise field of two parallel round jets 
can under some conditions greatly exceed that of one jet, and that the explanation 
may lie in the introduction of some unfortunate instability characteristics through 
mutual interaction effects. Sedel'nikov (1971, p. 14 et seq.) has obtained the dis- 
persion equation for two parallel round jets, but has not developed the study in 
sufficient detail to see whether, in fact, this is the case. 

This work was supported under a contract from the Ministry of Defence 
(Procurement Executive), administered by the National Gas Turbine Establish- 
ment, Pyestock, Hampshire. 
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